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On the Rate of Convergence 
for the Approximation of Nonlinear Problems 

By J. Descloux, J. Rappaz and R. Scholz 

Abstract. This paper shows how to obtain from estimates on linear problems error bounds in 

various norms for the approximation of nonlinear problems. The theory developed in this 

paper is applied to finite element methods for approximating the problem -Au = Xeu and the 
Navier-Stokes equations. 

1. Introduction. The aim of this paper is to present an abstract theory to obtain 

error estimates in various norms for the approximation of solution branches of 
nonlinear equations with the aid of known estimates for corresponding linear 

problems. We give a general analysis similar to that of Brezzi-Rappaz-Raviart [2] 

and apply it to the study of the convergence of finite element methods for nonlinear 

elliptic problems. Our analysis applies to regular points and simple limit points but 

not to bifurcation points. 
In order tQ- iIu.,rate o-ur results- we consider the following model problem. Let 2 

be a bounded convex domain in R2 with sufficiently smooth boundary aga. We are 

interested in approximating the solution of the boundary value problem 

(1.1) -Au = Xeu in 2, u=O on8g2, 

where X is a real parameter. It is well-known (see Amann [1], for instance) that there 

exists a maximum value X* of the parameter X such that Problem (1.1) has at least 

one solution u e Ho(2) n LI(2); moreover, there exists a unique solution u* e 

Hol(s) n L?(92) of (1.1) for X = A*, and (u*, X*) is a turning point. 
In order to parametrize the solution branch of Problem (1.1) which passes through 

(u*, x*), a new variable t and a normalization equation are introduced as in Keller 

[8]. To this end we take a nontrivial function q9* E Ho(9) such that 

(1.2) -Aq)* = X*e u** in 2, 

and we choose a continuous linear functional m on L2(72) with T(T*) # 0. Then 

there exist to > 0 and a unique continuous mapping t E (-to0 to) -- (u(t), X(t)) E 

(Hol(Q) n L?(92)) x R such that for ztI < to: 

(1.3) -Au(t) = 
X((t)eu(t) 

in , 
p(u(t)-u*) = t, u(0) = u*, X(o) = X*. 

Received August 22, 1983; revised June 25, 1984. 
1980 Mathematics Subject Classification. Primary 65J15, 65N15, 65N30. 

?31985 American Mathematical Society 
0025-5718/85 $1.00 + $.25 per page 

51 



52 J. DESCLOUX, J. RAPPAZ AND R. SCHOLZ 

In order to compute an approximation of F = {(u(t), X(t)): ItI < to), we consider 
a finite element method for discretizing Problem (1.1). Let Vh be the finite element 
subspace of Hol(72) n L'(Q) of piecewise linear polynomials with respect to a 
triangulation of Q with mesh size h > 0. For the sake of simplicity we assume here 
that Q is a polygonal domain; in the case of a curved boundary aua we use an 
appropriate modification of the functions of Vh in the boundary triangles. An 
approximation (Uh, X) E Vh x R of solutions of (1.1) is defined by 

(1.4) D(Uh Vh) = X(e h, Vh)o for all Vh E Vh, 

where D(, ) and (., )0 denote the Dirichlet integral and the L2( Q)-scalar product, 
respectively. 

Using the general results of Brezzi-Rappaz-Raviart [2], it is possible to prove that 
for h < h0 and E > 0 small enough, there exists a unique continuous mapping 
t E (-to, to) -+ (uh(t), Xh(t)) E Vh x R such that for t|I < to: 

D(Uh(t) Vh) = Xh(t)(e 9, Vh)o VVh E Vh, 

T(Uh(t) - U*) = t, IIU(t) - Uh(t)IIH11() + IX(t) - Xh(t)I < E. 

Moreover, error estimates for NXO') - Xh(t)I and lIu(t) - uh(t)IIHi() are obtained; 
but by using this theory it is not possible to get optimal error estimates for 
U(t) - Uh(t) in the L2-norm or the L'-norm, for example. 

In Section 2 we give an abstract setting which permits us to obtain error estimates 
in various norms for the approximation of the solutions of nonlinear equations. In 
order to justify our formalism we return to the above example by setting V = Hol(2) 
n L?(s2), W = L2(g). If T and Th are continuous linear operators from W into V 
defined, forf e W, by- 

Tf = u e V if D(u, v) = (f, v)o for all v e V, 

and 

Thf = Uh EVh if D(Uh Vh) =(f, vh)Ofor allvh E Vh, 

if G: V x R -- W is the nonlinear mapping given by G(u, X) = -Xeu, then Prob- 
lems (1.1) and (1.4) are, respectively, equivalent in finding pairs (u, X) and (Uh, X) in 
V x R such that 

(1.6) F(u, X) u + TG(u, X) = 0, 

(1.7) Fh(Uh, X) Uh + ThG(Uh, X) = 0. 

We remark that if (Uh, X) E V x R is a solution of (1.7), then Uh belongs to the 
range of Th and we have Uh E Vh. Result (1.5) is a direct consequence of the work of 
Brezzi-Rappaz-Raviart [2] and of the fact that lim h lIT - ThiIY(w v) = 0. More- 
over, we have the error estimate 

(1.8) IX(t) A*X(t)| + 11u(t) Uh(011 V < C11Fh(X(t)9 U(t))llV9 

with C independent of h < ho and itl < to, which leads to an optimal error estimate 

HUM(t) - UH(t)IIH1(n) < Ch. If we want to obtain optimal L2-error estimates from the 
same theory, we would like to set Problems (1.6), (1.7) in H x R instead of V x R, 
with H = L2(S2); unfortunately we cannot define G on H x R, and, in Section 2, we 
develop an abstract setting for replacing V by H in the error estimate (1.8). 
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In Section 3 we apply this theory to the above example and prove quasi-optimal 
L2- and L?-estimates for the conforming as well as for a mixed finite element 
method. Section 4 is devoted to the conforming finite element method for the 
Navier-Stokes problem, using the "stream-function formulation" with optimal error 
estimates in the H1-norm. 

2. Abstract Error Estimates. In this section, V and W will represent real Banach 
spaces; Y(W, V) is the space of bounded linear operators from W to V. If there is 
no danger of confusion, the different norms -II v I I I - I . ... will be denoted simply 
by 11 -I. The norm of a product space of the form V x R will be defined by 

II(V9 X)IIVXR = IIVII V+ IXI- 

Let T and Th belong to Y(W, V), and let G: V x R W be a nonlinear 
CP-mapping withp > 2; h denotes a positive parameter, the values of which have an 
accumulation point at 0. 

In a neighborhood of a point (uo, Xo) E V x R, we consider the nonlinear 
equations 

(2.1) F(u, X) = O, Fh(u, X) = O, 

where F and Fh: V x R -- V are nonlinear mappings defined by 

(2.2) F(u, X) = u + TG(u, X), Fh(u, X) = u + ThG(u, X). 

For an intuitive meaning of V, W, G, T, Th, F, and Fh, the reader may refer to the 
example of Section 1. 

We first suppose: 

(2.3) (a) F(uo, Xo) = 0, 
(2.4) (b) T is a compact operator, 

(2.5) (c) lim || T- ThlIg(wV, )=. 

Denoting by F'(u, X) e ?(V x R, V), by DuF(u, X) E I(V, V), and by DXF(u, X) 
e Y(R, V), respectively, the total derivative of F at (u, X) and the partial deriva- 
tives of F with respect to u and X, we remark that Hypothesis (2.4) implies that 

DUF(u, X) is a Fredholm operator of index 0 and, consequently, that F'(u, X) is a 
Fredholm operator of index 1. 

We next suppose either that DuF(uo, Xo) is an isomorphism from V into itself, or 
that DuF(uo, Xo) has a kernel of dimension 1 and Dx(u0, X0) does not belong to the 
range of DUF(uo, Xo); in the first case, (uo, Xo) is a "regular point"; in the second 
case, (uo, Xo) is a "simple limit point". This assumption can be written simply as 

(2.6) (d) RangeF'(u0, X0) = V. 

The following result can be found in Descloux-Rappaz [4]. 

THEOREM 2.1. Under Hypotheses (2.1)-(2.6), there exist ho > 0 and a neighborhood 
of (uo, Xo) E V x R such that, for h < hog and in this neighborhood, each of the 
equations F(u, X) = 0 and Fh(u, X) = 0 possesses a unique branch of solutions. These 
branches can be parametrized as (u(t), X(t)), (uh(t), Xh(t)), Itl < to, to > 0, with the 
following properties: 

(a) (u(t), X(t)) and (uh(t), Xh(t)) are of class CP; (u(0), X(0)) = (u0, Xo); 
u'(O) # 0; 
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(A3) limh 0 (UP1t1<t {IIuU(k)(t) - u(k)(t)11V + IX(k)(t) - X(k)(t)l) = 0, 0 < k < 
p - 1, where u(k), X(k),... are the kth derivatives of u, X,... with respect to t; 

(y) there exists a constant C such that, for ItI < to, h < h0, 0 < k < p - 1, we have 
k d 

|u(k)(t) - u(k)(t)||V + JX(k)(t) - X(hk)(t)| < C E X(t)) 

The purpose of this section is to derive error estimates for 
u(k)(t) -u(k)(t) 

in a 
norm different from v . 1 Let H be a Banach space for which we suppose 

(e) V c H with continuous injection; 
(2.7) (f) there exists a constant C such that along the solution branch of the exact 

problem (u(t), X(t)) defined by Theorem 2.1, we have 
1-1 

(2.8) IIDA DUG(U(t)g X(t))[vl1 ... ... V, Illw < Cil VillHI1 illvj| 
i=1 

for Itl < tog1 < k < p-1,19 < I < k, and for all v1,. ... v, E V. 
Our main abstract result is contained in the following 

THEOREM 2.2. We assume that Hypotheses (2.1)-(2.8) are satisfied. Then, for the 
exact and the approximate branches of solutions defined by Theorem 2.1, there exist 
constants tog h0, and C andparametrizations (u(t), X(t)), (Uh(t), Xh(t)), such that, for 
O < k < p-2, Itl < to h < ho we have 

(k)(t) - U(k)(t)11H + JX(k)(t) - X(hk)(t)l 

< C{ E |LFh(u(t), x(t))| + IFh(U(t), X(t))II12 } 

Remark 2.1. In Theorems 2.1 and 2.2, the parametrizations of the exact (respec- 
tively, of the approximate) solution branch are not necessarily identical; however, in 
the proofs we shall show that it is possible to choose the same ones. 

Remark 2.2. In general, Theorem 2.2 gives better bounds for IX(k)(t) - X(k)(t)l 
than Theorem 2.1 does. 

Remark 2.3. In many examples, Hypothesis (2.8) will be verified by using 
regularity properties of the solutions of the exact problem. 

Remark 2.4. Hypotheses (2.4) and (2.5) can be weakened by using results of 
Descloux-Rappaz [4]. 

We first prove the following auxiliary result. 

LEMMA 2.1. Let R e Y(W, V), S e Y(V, W), a E W, a e R, m e Y(V, R); let 
A e Y(V x R, V x R) and B e ?(W x R, W x R) be the linear operators defined 
by 

A(v, X) = (v + RSv + XRa, 9p(v) + aX), 

B(w, X) = (w + SRw + Xa, qp(Rw) + aX). 

We suppose that A is an isomorphism. Then B is an isomorphism and 

||B-111 < 1 + (1 + IIRI|)(1 + IISII + ||a||)||A-111. 
Proof. We only verify the surjectivity of B. Let g e W, y e R be given; setting 

(v, X) = A-1(Rg, y), w = g - Xa - Sv, if follows that B(w, X) = (g, y). From the 
expressions of w and X, one deduces easily the bound for llB 1ll. O 
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In the following, we shall suppose that Hypotheses (2.3)-(2.8) are satisfied. By 
(2.6), since F'(uo, Xo) is a Fredholm operator of index 1, it follows that the kernel of 
F'(uo, Ao) has dimension 1. Let (z, w) e V x R be a nonvanishing element of the 
kernel of F'(uo, A0). By (2.7) and the Hahn-Banach theorem, there exist Tp e (H, R) 
and a E R such that 

(2.9) +p(z) +aw 0. 

Letusdefinethemappings : Vx R x R -- Vx Rand 9: Wx R x R -* Wx R 
by 

(2.10) Y(u, A, t) = (u + TG(u, A), p(u - uO) + a(X - Ao)-t), 

(2.11) 9(w, A, t) = (w + G(Tw, A), cp(Tw - uO) + a(A - Ao) - t). 

Furthermore, we set wo = -G(uo, Ao) and notice that, by (2.3), we have uo = Two 
and, consequently, Y(uo, Ao, 0) = 0, i9(wo, AXo 0) = 0. (2.8) and (2.9) imply that 
D(U Xs(UO, Ao, 0) e ?(V x R, V x R) is an isomorphism; setting, in Lemma 2.1, 
R = T, S = DuG(uo, Xo), a = DxG(uo, Ao), we see that A = D(u x)Y(uo, X0,0) 
and that B = D(W x9(wo, AX 00) E Y(W x R, W x R) is an isomorphism. We next 
defineFh: V x R x R -+ V x R and !h: W x R x R -* W x R by the right-hand 
members of (2.10) and (2.11) when T is replaced by Th. By (2.5) there exists a 
neighborhood r of (u0, A0, 0) E V x R x R and a neighborhood O& of (wo, A 00) 
e W x R x R such that, for 0 < k < p - 1, lMh 6W:'(k) - y(k) uniformly in f 
and limh h- - =9(k) uniformly in O. By the classical implicit function theorem 
applied to Y and 9 and by its special version given in Brezzi-Rappaz-Raviart [21 
applied to .h and gh' we obtain 

LEMMA 2.2. (a) There exist positive constants t0, h0, and CO, and for ItI < t 0 h < ho 
there exist unique elements (u(t), A(t)) e V x R, (w(t), ,u(t)) e W x R, 
(uh(t), A -(t)) V X R, (wE(t),(t)) e W X R such that 

.F(u(t), A(t), t) = 0, ||u(t) - UOIIV + |A(t) - A0o < C0, 

?79(w(t), y(t), t) = 0, I|w(t) - wollw + My(t) - Aol C0, 

.5Fh(Uh(t), Ah(t), t) = O, IIUh(t) - UOIIV + IAh(t) -XA0 <1 CO, 

gh(wh(t), NWa(t), t) = O, IIWh(t) - WolIw + |h(t) XAol < C0; 

moreover, allfunctions u(t), A(t), w(t), ,L(t),... are CP-mappings. 
(/3) For O < k < p -1 we have 

lim sup {llu(k)(t) - U(k)(t)IIV + IA(k)(t) -X(k(t)| li sup II 
l 

h 
h-*0 ll_t 

+ jw(k)(t) - W(k)(t)llW + |,pk)(t) -A( k)(t)l} = 0. 

(y) There exists a constant C such that, for 0 < k < p -1, ItI < to, and h < h0, we 
have 

(k)(t) U k)(t)lIv + IA(k)(t) _ X(k)(t)I S C k 
1=0 dt VXR 

k d 
jw(k)(t) -W(~k)(t)ll W + jIk)I(t) _ f,pk)(t)j '<c ~d' ~ t,t 

h hE -gh W(t 9 (t)I1t 
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Note that, in Lemma 2.2, t is a pseudo-arclength parameter, as in Keller [8]. 
Clearly Theorem 2.1 is a direct consequence of Lemma 2.2, and we now proceed to 
the 

Proof of Theorem 2.2. We remark that 9(-G(u(t), X(t)), X(t), t) = 0 and 

9h(-G(Uh(t), Xh(t)), Xh(t), t) = 0 for Itl < to; by the uniqueness of the quantities 
u(t), X(t),... in Lemma 2.2, we deduce the following key relations: 

(w(t) = -G(u(t), X(t)), u(t) = Tw(t), 
(2.12) Wh(t) = -Gh(uh(t), Ah(t)), Uh(t) = Thwh(t), 

u(t) = X(t), PLh(t) = Xh\t) for Itl < tQ, h < hQ. 

In the following, C will denote a generic constant. 
Since G is a map of class CP, we can assume, without loss of generality, that for 

I < tog h < hog (Tw(t), X(t)) = (u(t), X(t)), and (Thw(t), X(t)) belong to a convex 
neighborhood rc V x R of (uo, Xo) for which we have 

(2.13) sup IIG(k)(v,X)I C, 0 < k p 
(v, X)eS 

where represents the norm of the k-multilinear operators from (V x R)k into W. 
Since 9(w(t), ,u(t), t) = 0, we obtain, by Lemma 2.2 and (2.12) for 0 < k < p - 1, 

ItI < t0, h < ho: 

lw (k)(t) - Wh,k)(t)||W + JX(k)(t) -(k)(t)l 

(2.14) S C>JE {-i(G(Thw(t), X(t)) - G(Tw(t), X(t))) 

+ JI(Th -T)w (t)ll, 

where we have used Hypothesis (2.7) and the fact that Tp E Y(H, R). Furthermore, 
by (2.7), (2.12) and the uniform boundedness of the operators Th E 2Y(W, V), we 
have 

( 5 u(k)(t) - U(k)(t)jj < 
II(TH 

- T)w(k)(t)IIH + |Th(W (t) - w(k)(t))|H 

< jj(Th - T)w(k)(t)IIH + Cjjw(k)(t) - W(k)(t)IIW. 

Clearly, the relation Y(u(t), X(t), t) = 0 implies F(u(t), X(t)) = 0 (see (2.2)), and 
by (2.12) we have Fh(u(t), X(t)) = (T - Th)w(t); consequently, by (2.14) and 
(2.15), the proof of Theorem 2.2 will be completed if we establish that, for 
O < k < p - 2,Itl < to,andh < hog,wehave 

Y -|'-j(G(Thw(t), X(t)) - G(Tw(t), X(t))) 

1 C{ E II(Th - T)w(')(t)IIH + II(Th - T)w(t) 112). 
/=O 

For the sake of simplicity, we verify (2.16) only for k = 0 and k = 1. We shall use 
the notations V = V x R, H = H x R, G(v) = G(v, X) for v = (v, X) e V, and we 
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set u(t) = (u(t), X(t)) = (Tw(t), X(t)), Vh(t)= (Thw(t), X(t)). For k = 1, k = 2, 
Hypothesis (2.8) implies 

(2.17) JIG'(u(t)) vll w < Cllvll,,, 

JIG"WO()l Vl, V21 11W < ClIV111 VIIV211H 

for all v1, v 2 E V and all ItI < to. By (2.13), (2.17), and Taylor's formula, we get 

(2.18) IIG(vh) - G(u) w < C(tIlh - UIIH + Ilh -UL2i, 
where, from now on, we simply write u(k) and vLk) for u(k)(t) and v(k)(t). (2.18) 
proves (2.16) for k = 0. With the same arguments we obtain 

|d(G(vh) - G(u)) =IIG'(g.) vh - G'(u)u'II W 
w~~~~~ 

(2.19) < ||(G'(Vh) - G h(h))vh,IW+llG'(u)(v, - 

< JIG h")[v*, h - || W + C _vIIVIvh - U| V+ J|G'(u)(vh - U 11W 

< C - IlVh UIIH + 11Vh U- 11H + IIVh - V 

where we have used the boundedness of llv'Illv and relation (2.13) for k = 1,2,3; 
(2.19) proves relation (2.16) for k = 1. 

3. Application I: A Second-Order Boundary Value Problem. Let S c R2 be a 
bounded convex domain with sufficiently smooth boundary 80. We consider the 
nonlinear boundary value problem 

(3.1) -Au = Xeu inQ2, u = O ona 2. 

We will show that the abstract results can be applied in the context of approxima- 
tion of branches of solutions of (3.1) by conforming and nonconforming finite 
element methods. 

First we will consider the case of conforming finite elements. We use the standard 
notation of Sobolev spaces Ho(S2), Hm(Q), Wm'P(Q),... and set V:= HoJ(Q) n 
L??(Q), W := L2(Q2). A weak formulation of (3.1) is 

Find (u, X) E V x R with 

(3.2) D(u,v)=X(eu,v)o forallvE V, 

where D(-,. ) and (.,. )o denote Dirichlet's integral and the L2( g)-scalar product, 
respectively. 

We define the operator T e ?(W, V) by 

Tf= u if D(u,v)= (f,v)0forallv c V 

holds, and the nonlinear operator G: V x R -> W is given by G(u, X) = -Xe u. 
Then (3.2) is equivalent to the following problem: 

Find (u, X) e V x R with 

(3.3) F(u, X) := u + TG(u, X) = 0. 

To determine approximate solutions of (3.3) we consider subspaces V,h c V, which 
consist of continuous, piecewise linear functions with respect to regular triangula- 
tions of Q with mesh-size h > 0. (In the case of a curved boundary ag we use an 
appropriate modification of the functions of Vh in the boundary triangles. See 
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Zlamal [16], for example.) With respect to the approximation properties of the 
spaces Vh we refer to Ciarlet [3], for example. We define Th EE ?(W, Vh) by 

Thf= Uh if D(Uh,T) =(f,)oforallT E Vh. 

The following estimates are known: 

(3.4) II(T - Th)fiiL2(a) + hil(T - T)fiiH() < Ch2iifiiL2(a); 

(3.5) II(T-- TT)fiiLI(_) ChIIfIIL2(I); 

(3.6) II(T - Th)f IIL-(Q) < Ch2|ln hl I|Tf11 W2 00(a) if Tf E W2,,( 2) holds. 

Here C denotes numerical constants which are independent of f and h. For proofs of 
(3.4) and (3.6) we refer to Nitsche [10], [11]. Estimate (3.5) follows from (3.4) and 
inverse estimates. An immediate consequence of (3.4) and (3.5) is 

(3.7) T -Th11.g(w, v) < Ch. 

The Galerkin problem to approximate the solution of (3.3) is formulated as follows: 
Find (uh, X) E Vx Rwith 

(3.8) Fh(uh, X) := Uh + ThG(Uh, X) O. 

Note that if (uh, X) is a solution of (3.8), then Uh belongs to the range of Th and 
we have uh E Vh. 

Assume (uo, Xo) E V x R fulfills (2.3) and (2.6). First of all, by Theorem 2.1, we 
have: 

For itl < tog h < hog there exist branches (u(t), X(t)), (uh(t), Xh(t)) of solutions 
of (3.3) and (3.8), respectively, with (u(0), X(O)) = (uo, Xo) such that, for k E N, 

(3.9) jlu) ((t) - k) + X(k)(t) - X(k)(t)j < Ckh 

holds, where Ck is independent of h and t. 
The proof of (3.9) is an immediate consequence of (3.7) and the fact that G is of 

class C?. Applying Theorem 2.2, we get 

THEOREM 3.1. For the branches (u(t), X(t)), (Uh(t), Xh(t)) as above, the estimate 

(3.10) jju(k)(t) - u(k)(t)IIL2(a) + JX(k)(t) - X(hk)(t)j < Ch2 

hoidfJ,or alZ'k = f, , f. i.1 moreover, u is a CT-mapping ojf-to, tof into W2?(&2), 
p > 2, then, for O < k < p -2, 

(3.11) IIu(k)(t) - U(k)(t)IIL () < C,h2|ln hi 

holds. Here Ck denotes constants which are independent of t and h. 

Proof. First we set H := L2(Q). Then Assumption (2.7) is trivial; to apply 
Theorem 2.2 we have to prove (2.8). Since we can write G(u, X) = XG(u) with 
G( u) = e u, we only have to show 

l-l 
(3 .12) ||D'G ( U)1[V11 . .. 'V,il| W <1 CIIVIIIH -1 IIVill V 

with W= L2(Q), V= Hol(2)nLL7(g). Since DIG(u)[vj,...,v] =eu* v1 *- VI 
holds, (3.12) follows with 

C = exp (IIUIiLo(g)) 
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Now (3.10) is a direct consequence of Theorem 2.2 and estimate (3.4). To show 
(3.11) we set H := L((Q). Then (2.7) and (2.8) are trivial and the result follows by 
combining Theorem (2.2) and estimates (3.4) and (3.6). r1 

Next we will apply a mixed finite element method to get approximations of a 
branch of solutions of Problem (3.1). In this case we set V:= L??(Q) x L2(Q2)2 and 
W:= L2(Qi). Furthermore, let H(div; Q) be the subspace of those elements z E 

L2( q)2 with div z E L2(Q). Using these notations, another weak formulation of (3.1) 
is: 

Find ((ul, u2), X) e V x R with 

3.13- ( u, div z )0 = ( u2, EZ)o for all z E H(div; Q), 

(3.13) -(div u2, w)0 = X(eul, w)0 for all w E L2(q), 

where (, )0 denotes the scalar product in L2(Q) as well as in L2(q)2. 
In this case the operator T: W -* V is defined as follows. For f E W denote by 

u = (ul, u2) E L2(Q) x H(div; Q) the solution of 

-(u1, divz)0 = (u2, z)0 for all z E H(div; Q ), 

-(div u2, 9 = (f, w)0 for all w E L2(2). 

Using shift theorems and Sobolev's imbedding theorem, we get Tf = u E V. 
Further, let G: V x R -* Wbe given by G(u, X) :Xe ul. Then Problem (3.13) is 

equivalent to: 
Find (u, X) e V x R with 

(3.14) F(u, X) u + TG(u, X) = 0. 

To determine approximations of the solution of (3.14) by a mixed finite element 
method, we use the subspaces introduced by Raviart-Thomas [12]. With respect to a 
quasi-uniform triangulation of Q with mesh size h > 0, we denote by Sh the space of 
piecewise linear functions without any boundary conditions on HA or continuity 
requirements across interelement boundaries. Hh are subspaces of H(div; Q) which 
consist of pairs ' = (1, 2) such that tj and '2 are special polynomials of degree 2. 
We set Vh := Sh X Hh; the operator Th: W -v Vh is defined by Thf = Uh = (U1,h U2,h) 

if 

-(ul ,hdiv')o = (u2,h9 )o for all ' E Hh, 

-(div U2,h 9)O = (f 9, )O for all X E Sh. 

The following estimates for u = Tf and Uh = Thf are known: 

(3.15) IIUi - UI1hILL2(g) + hIIU2 - 
U2,hIIL2()2 K Ch2IIf IIL2(g), 

(3.16) IIul - UI,hILL(Q) < Chllf IIL2(g). 

For a proof of (3.15) see Raviart-Thomas [12], Scholz [13]; (3.16) follows from (3.15) 
and inverse estimates. A direct consequence of (3.15) and (3.16) is 

(3.17) IIT- Thjj| g(w v < Ch. 

The Galerkin problem corresponding to (3.14) is defined by 

(3.18) Fh(uh, X) := uh + ThG(uh, X) = 0. 
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If (2.3) and (2.6) are satisfied, for Iti < to, h < ho, k E N, according to Theorem 2.1 
there exist branches ((ul(t), u2(t)), X(t)) and ((ulh(t), u2h(t)), Xh(t)) with 

(3.19) /|U(k)(t) - u1,h (t)|IL-(Q) + 
/U|2 )(t) - U2,)(t)IIL2(Q)2 

+ X(k)(t) -o(k)(t)| 
'< 

C 

where Ck is independent of t and h. 
To get a better order of convergence for the approximation of ul in the L2(9)-norm, 

we need 

LEMMA 3.1. Let f E W be given and set u = (U1, U2) = Tf and Uh = (U1,h, U2,h) = 

Th f. Then the estimate 

(3.20) 11U2 - U2,hIIH-1(Q)2 < Ch2IIfIIL2(g), 

with H (-I?) = Hd(Q)*, holds, where C is independent off and h. 

Proof. By definition we have 

11U2 - U2,h11H- (Q2= SUp(U2 
- U2 h z)1 

where the supremum has to be taken over all z E Ho( U)2. Let z be fixed. In 
Raviart-Thomas [12] a linear operator H-h: H'( )2 -* Hh has been constructed with 

IZ - IhZIIL2(U)2 < ChIZIIH1 (g)2 

and div HIhZ = Phdivz, where Ph: L2(Q) -> Sh denotes the L2(g )-projection. Using 
the defining relations of T and Th, we therefore get 

U(U2 - U2,h z)01 < I(U2 - U2,h, Z - HhZ)oI + l(Ul - 
U1,h, PhdivZ)OI 

< C{ hIIu2 - U2,hIIL2(g)2 + lIlu - 
U1,hIIL2(E) } . IIZ'I101()2. 

Together with (3.15) the assertion follows. 0 

Using this result, we get 

THEOREM 3.2. With the same notations as above, the estimate 

(3.21) Ilu(k)(t) - u(k)(t)IIL2(g) + IIu(k)(t) - u(k)(t)IIH-I(U)2 

+ /X(k)(t) - X(k)(t)/ l C 2h 

holds, Ck independent of h and t. 

Proof. We set H := L2(gi) x H-1(Q)2 and again apply Theorem 2.2. By (3.15) and 
(3.20) we get 

|(T-h)f II|H < Ch2lif 11 

for f E W, W = L2(Q). The inclusion (2.7) is trivial, and (2.8) is shown in the same 
way as in the proof of Theorem 3.1; so the assertion follows. O 

Renmark 3.1. If the solution of (3.14) is sufficiently smooth, an estimate analogous 
to (3.11) can be proved, using L'-estimates for the mixed finite element method. 
(See Johnson-Thomee [7]. Scholz [14].) 
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4. Application II: The Navier-Stokes Problem. In this section we consider the 
Navier-Stokes equation (stream-function formulation) for an incompressible viscous 
fluid. Let Q c R2 be a convex polygonal domain. For g E H-2(Q) we consider the 
problem 

(4.1) r1vA + AxAY -Y/A~x = g in Q, 

( = An=, O on K2, 

where v > 0 is the viscosity coefficient; A1\ is the vorticity. (Again we use standard 
notations of Sobolev spaces; especially, we denote H-k(&) := Hk(Q)* and 
W-kp() := Wk,q()* k E N, 1 < p < o, i/p + 1/q = 1.) A weak formulation 
of Problem (4.1) is: 

Find A Ee HJ2(Q) such that 

(4.2) v(A4,, AV) + (4,A4, - #A4X% v) = (g, v) for all v E H02(Q) 

where (.,. ) denotes the L2(Q )-scalar product of the pairing between elements of 
WkP(Q) and Wk (Q) (For details we refer to Girault-Raviart [5] or Teman [15], 
for example.) 

For functions u, v e CO&(Q) we find, by 

uXAuY - uYAuX = (UXAu). -(UYAu) 

and integration by parts, that 

(4.3) (uXAu), - uvAux, v) = (vxu, - vvuxu Au); 

this means for u E H,2(S) we have uxAuv - uVuX EA e W-14/3(Sl). Since the opera- 
tor T: H- 2(Q) -- H,2(9), defined by 

Tf = u if (Au, Av) =(f, v) for all v E HJ2(0), 

is also continuous from W -14/3(Q) into W3'4/3(g) (see Grisvard [6]), the solution of 
the Navier-Stokes problem fulfills the regularity condition 4 Ee H02(f) n W3,4/3(g) 
for g E W-14/3(Q). If, moreover, g E H-1(0) holds, the regularity result 4 E 

H02(0) n H3(Q) follows by Sobolev's imbedding theorem and the fact that T is also 
continuous as an operator from H-1(9) to Ho(Q) n H3(fl). (Consult also Kellogg- 
Osborn [9].) 

We want to show that the general theory of Section 2 can be applied if we choose 
W:= H-2(f), V:= W1'4( 9), and H := Ho(f2), and if the right-hand side g of 
Problem (4.1) is regular enough. The crucial point for further analysis is the 
following 

LEMMA 4.1. Let u, v E CO?(9) be given. Then 

(4.4) (u Au -u ux,A=, v u vu -v2) + - u2, vXy) 

holds. 

Proof. First we use (4.3) and get 

(uXAuv - uvAux, v) = (Vxu - vux Au). 
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Now we write 

(Vxuv, AU) = (uxuXx + u vX) = ((U u) 2- + 2yv, VX) 

= -(uu, v) + -(U u VX,V) 

By the same argument we get 

(v,uX, Au) = -(u uV, v) + - u2, Vv) 

and the result follows. r1 
Let g E H-2(Q) be fixed. We get G: V x R -* Wwith 

G(u, X) := X(uxpuv - uy/ux - g) 

Using Lemma 4.1, we see that G is well defined. Further, Problem (4.2) is equivalent 
to 

(4.5) + TG(4, X) = O, X = 1/v. 

By the regularity results mentioned above, we find G(4, X) E W-1'4/3(q) for 
g E W-1,4/3(Q), and G(4, X) E H-1(0) for g E H-'(Q). 

Let Vh, 0 < h < h0, be a family of finite-dimensional subspaces of H02(0) with 
the following approximation property: 

For u E H02(0) n W3 (2) there exists Uh E Vh with 

(4.6) IIU - Uhll WkAp(2) < Ch3 -k- 2(1/q- 1p) IIUII W3 q(U), 

0 < k < 2, 1 < q < p < oo, where C is independent of u and h. 
Remark 4.1. Approximation property (4.6) is typical for conforming finite element 

subspaces with respect to regular triangulations of Q with mesh size h > 0. (See 
Ciarlet [3], for example.) 

The operator Th: W -* Vh is defined by 

Thf= Uh E Vh if (Auh, zT) = (f, Tp) for all Tp E Vh. 

The discrete analogue of Problem (4.5) is 

(4.7) 4~'h + ThG(4h, A) = O. 
To apply the general theory of Section 2 we need the following lemmas. 

LEMMA 4.2. The estimate 

(4.8) |IT-ThIg(wV, Ch1T2 

holds with C independent of h. 

Proof. Let f E W be given. By definition we have 

II(T- Th)f 11v sup lizil w-U4l3(Z) 

For z E W-1,4/3(q) fixed there exists w E H02(0) n W3'4/3(q) such that tA2w = z 
and 

(4.9) IIWII W3.4/3(g) < CIIZII W-1,4/3(g), 

holds with C independent of z. We get 

(U - Uh, Z) = ((U - Uh), AW) = (U(U - Uh), 9(W - (0))9 c E Vh, 
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where we used the defining equations of u and Uh, respectively. If o E Vh is 
especially chosen as the orthogonal projection of w onto Vh with respect to the scalar 
product (A , Al ), we get 

(l(U - Uh), L\(w - .)) = (Au, A(w - W)) < CIIUIIH(g) inf 11w - (AIIH) 

Using the approximation property (4.6) with k = 2, q = 4/3, and p = 2, we find 

inf |IW - (lIH2(Q) < Ch1'2IIwII W3.4/3(g). 
(E0 Vh 

By (4.9) and the a priori estimate 

||U||IH2(U) < CII || H-2(Q) = Cllf 11 w9 

we finally get 

h|TT)f 1|V <, ChII2||f 11W9 
and (4.8) is shown. [1 

Remark 4.2. With the same duality arguments, forf E H-1(2) one can prove 

(4.10) ||(T-Th)fIIv Ch3-2If IIH-1( ) 
and 

(4.11) 1|(T - Th)f 1 Ch2llfllH-12), 

V = Wj'4(Q)andH= H(). 

LEMMA 4.3. Let 4 be a solution of (4.5) and assume g E W-1'4/3(0): i.e., E e 

HJ2(g) n W3'4/3(Ql). For all u E Ho(2) the estimate 

(4 .12) ||DpG (, + A) Ull W < C|AI JJQ1 W3.4/3(U)JJUJJ H 

holds, C independent of 4, X and u. 

Proof. Let v E H02(S) be fixed. Using Lemma 4.1 we have 

(G(%,, X), v) = X[(4AV, VY - VXX) +(ip - _ , VXY) -(g, V) 

and, consequently, we find 

(D,pG(4, X)u, V) = X(4XUY + iYux, vVY - vXX) + 2X(xux - uy, vx) 

We therefore get 

(4.13) |(D,pG((, X)u, v)j < C|XI 1(12)tivil(2)IIuItHo(1)- 

By Sobolev's imbedding theorem we find 

110l wl'00(Q) <' CJJQl W3.4/3(g); 

together with (4.13) we get (4.12). r 
Now let (40,, X0) be a solution of (4.5) such that (2.3) and (2.6) hold, and let 

(41(t), X(t)) and (4,(t), Xh(t)) be branches of solutions of (4.5) and (4.7), respec- 

tively, according to Theorem 2.1. For simplicity we assume g E H-1(9), i.e., 

4(t) E H2(l) n H3(2). Then we get 

THEOREM 4.1. For |t| I t0, h < h0 the estimate 

(4.14) II1(k)(t) - )(t)llKi4(1) + IX(k)(t) - X(k '(t) I Ckh 3/2, 
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k e N, holds. Moreover, for k = 0, 

(4.15) Ih+(t) h(t)IlHlo() + 1X(t) - Ah(t)l 1 Ch2 

holds. 

Proof. (4.14) is a consequence of Theorem 2.1, Lemma 4.2, and estimate (4.10). 
Lemma 4.3 shows that Assumption (2.8) of the general theory is fulfilled for p = 2; 
(4.15) therefore follows by Theorem 2.2, (4.10), and (4.11). 0z 

Remark 4.3. Estimates analogous to (4.14) and (4.15) can be derived if only 
g E W-1,4/3(g) is assumed. 
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